
0
AD-A282 469

Map View User's Guide

Larry McDonough, Scott Bailey,
Allison Koehler

DTIC '

SELECTEJUL 2 5 19941

G

Project AIR FORCE
Arroyo Center

94-22943 mC Q [.0 "" [N 8PECM' I
94 7 21 057

The research reported here was sponsored by the United States Air Force
under Contract F49620-91-C-0003; and by the United States Army under
Contract No. MDA903-91-C-0006. Further information may be obtained
from the Strategic Planning Division, Directorate of Plans, Hq USAF.

iUbrary of Congress Cataloging In Publcato Date
McDonough, Larty, 1962-

MapView user's guide / Larry McDonough, Sot Bailey,
Allison Koehler.

p. cm.
Prepmd for the United Statea Air Force and Army."

"MR-160-AFIA."
Includes bibliographical references and index.
ISBN 0-8330-1363-7
1. MapView. 2. Computer war gSame& 3. United States-

Defenses-Computer simulation. L Bailey, Scott 1948- .
IL Koehler, Allison, 1967- . I. United StItes Air Force.
IV. United States, Army. V. Title.
U310.M33 1993
793.9'2--dc2D 93-10349

CIP

RAND is a nonprofit institution that seeks to improve public policy through
research and analysis. Publications of RAND do not necessarily reflect the
opinions or policies of the sponsors of RAND research.

RAND
Copyright 0 1993

Published 1993 by RAND
1700 Main Street, P.O. Box 2138, Santa Monica, CA 90407-2138

To obtain information about RAND studies or to order documents,
call Distribution Services, (310) 393-041., extension 6686

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST

QUALITY AVAILABLE. THE COPY

FURNISHED TO DTIC CONTAINED

A SIGNIFICANT NUMBER OF

COLOR PAGES WHICH DO NOT

REPRODUCE LEGIBLY ON BLACK

AND WRITE MICROFICHE.

MapView User's Guide

Larry McDonough, Scott Bailey,
Allison Koehler

Prepared for the
United States Air Force
United States Army

Acceslon For
NTIS CRAI
DTIC TAB
Unannounced 0
Justification

Project AIR FORCE DsbutionI

Afroyo Cnter Dsrbto
Availability Codes

Avail and I-or
Dist Special

01 .U

Approved for public release; distribution unlimited

NapView 3.0 - iii -

This document is a preliminary working draft describing software

still in development and should be considered an interim reference

manual.

MapView was developed under the TLC/NLC (Theater Level Campaign/

Non-Linear Combat) project-a next-generation operational, theater-

level model with supporting tools. To our knowledge, no preexisting

tools fully satisfied the following requirements:

* Display simulation (or database) objects on a map

* Attach relevant data to the objects

" Modify those data (including position, color, etc.)

* Communicate easily with the model.

Consequently, MapView was developed as a flexible, general-purpose

graphics interface to display, manipulate, and query objects on a map.

Eventually, MapView will replace the RAND Strategy Assessment System

(RSAS) maptool and be incorporated within the Cartographic Analysis and

Geographic Information System (CAGIS) environment.

This work was sponsored jointly under the Theater Force Employment

Program of Project AIR FORCE and under the Army Research Division's

Arroyo Center. Project AIR FORCE and the Arroyo Center are two of

RAND's federally funded research and development centers.

Inquiries and comments are welcome. They may be sent directly to

the authors or to Dr. Richard Hillestad, Senior Researcher and Project

Leader for the TLC/NLC project.

MapView 3.0 - v - Contents

com"We

Preface ... iii

Figures .. ix

Acknowledgments ... xi

SECTIONS

1. INTRODUCTION ... 1

2. REQUIREMENTS AND ENVIRONMENT 3

3. USING THIS GUIDE ... 5

4. MAPVIEW BASICS ... 7
MOVING AND RESIZING WINDOWS 7
IMAGES MENU BUTTON 8

Load Image .. 8
Load Colormap ... 8
Erase Image ... 9
Save to Rasterfile 9

OBJECTS MENU BUTTON 10
Define Types ... 10
Create (Draw) .. 11
Load file .. 12
Save file .. 12
Show by type ... 12
Select and Edit 13
Connect .. 13

HELP BUTTON .. 13
EXIT BUTTON .. 14

5. TUTORIAL .. 15
START UP MAPVIEW ... 15
LOAD AN IMAGE ... 16
LOAD AN OVERLAY (GOAL) FILE 18
CREATE POLYLINE OBJECTS 18

View and Modify the Polyline's Attributes 21
Move the Polyline 21
Unshow and Reshow the Polyline 23
Destroy the Polyline 23

CREATE ICON OBJECTS 23
CREATE NETWORKNODE OBJECTS 26
CREATE NETWORKARC OBJECTS 26

Draw NetworkArcs 26
CREATE NETWORKREGION OBJECTS 27

Draw a NetworkRegion Object 27
MOVE A NETWORKNODE 27
DESTROY A NETWORKNODE 27
CREATE CIRCLE OBJECTS 28

MapView 3.0 - vi - Contents

CREATE TEXT OBJECTS 28
SAVE OBJECTS TO A GOAL FILE 29
VIEW THE GOAL FILE 29
RELOAD THE GOAL FILE 29
DEFINE A NEW GRAPHIC OBJECT TYPE 29
CREATE INSTANCES OF THIS NEW TYPE 30
SAVE THE SCREEN TO RASTERFILE 30

6. GRAPHIC OBJECT ANIMATION LANGUAGE (GOAL) 33
GENERAL STRUCTURE 33

GOAL Comnands .. 33
BackGraphic .. 33
CreateMenu and AttachMenu 34
CreateGraphic, CreateAndShowGraphic 36
DefineBitmap ... 37
DefineEnumeratedType 39
DefineGraphicType 39
DefinePattern .. 40
DestroyGraphic 41
DestroyAllGraphics 41
DestroyGraphicType 41
EraseImage ... 42
FrontGraphic ... 42
LoadColormap ... 42
LoadImage .. 43
MoveGraphic .. 43
Run ... 44
SaveAllObjectsToFile, AppendAllObjectsToFile 45
SaveSelectedObjectsToFile,

AppendSelectedObjectsToFile 45
SaveTypedObjectsToFile,

AppendTypedObjectsToFile 45
SelectGraphic, UnSelectGraphic 46
SetWindowBounds 46
ShowAllGraphics 48
ShowGraphic, UnShowGraphic 49
SnapShot, SnapShotArea 49
UpdateAndShowGraphic 50
UpdateAndShowSelectedGraphic 50
UpdateGraphic .. 51
UpdateGraphic Operators: +=, =+, -=, 51
ViewFile ... 52

OBJECT STRUCTURE .. 53
Base Types ... 53
Pixel ... 53
LineSegment .. 53
Polyline ... 54
Polygon .. 54
Circle .. 54
Icon .. 55
Text .. 55
Network .. 56
NetworkNode .. 56

M4apView 3.0 - vii - Contents

NetworkArc.. 56
NetworkRegion... 56

Appendix A: Command-Line Arguments.................................... 59

Appendix B: Map Projections... 63

Index.. 65

Bibliography... 71

MapView 3.0 - ix - Figures

5.1 Initial MapView Display .. 17

5.2 Load Image File Dialog ... 17

5.3 Loading a GOAL File .. 20

5.4 Creating Graphic Objects ... 20

5.5 Modifying Selected Objects 22

5.6 Viewing an Object's Attributes 22

5.7 Selecting a Bitmap for an Icon Object 25

5.8 Drawing a NetworkRegion .. 25

5.9 Creating Text Objects .. 31

5.10 Defining New Graphic Types 31

MapView 3.0 - xi - Acknowledgments

AcKNOLDGMEWS

Several members of the TLC/NLC (Theater Level Campaign/Non-Linear

Combat) project development team and the MOSF (Military Operations

Simulation Facility) programming staff have made valuable suggestions

regarding the structure and syntax of GOAL (Graphic Object Animation

Language) and ease of use of MapView's user interface. They include

Richard Hillestad, Louis Moore, Corinne Replogle, Greg Daniels, and

Robert Weissler.

MapView 3.0 - 1 - Introduction

1. INTROWDUCTION

MapView is a general-purpose, object-oriented graphics program

that was developed as part of the Theater Level Campaign/Non-Linear

Combat (TLC/NLC) project at RAND. Every attempt has been made to

generalize the functionality of the program for use by other projects.

MapView is written in the C programming language and runs under the Xl

Release 5 windowing environment with Sun Microsystems' OPEN LOOK

Toolkit. The program enables scenario generation through a flexible,

user-friendly interface that defines graphic objects, places them on an

underlying image, and modifies or queries them as desired. In addition,

MapView can process a file of commands that define and modify graphic

objects and create animated simulation output.

The image formats currently recognized by MapView include

Cartographic Analysis and Geographic Information System (CAGIS) terrain

and features images, Sun rasterfiles (including screendumps, scanned

images, and images drawn using MapView), no image at all, and vector

images rendered using the WDB2 world database.

The predominant feature of MapView is its ability to define custom

graphic objects, attach relevant data, and provide an easy way of

visualizing and modifying the data. In this function, MapView has

proven useful in checking database validity, generating scenarios

(preprocessing), constructing runtime animation frames, and for post-

processing analysis.

MapView 3.0 - 3 - Requirements and Environment

2. nIBoUxIMiS AND NVIRONMT

Only the following systems and software are required to run

MapView:

" Xll Release 5 (R5)

* Color Sun workstations (3, 4, and Sparcstations 1, 2, and

10)

* Sun Microsystems' OPEN LOOK Toolkit version 3 or higher.

MapView does, however, recognize a few UNIX environment variables if

they exist and are set. These variables and their definitions are

listed below.

MAPVIEWBITMAPPATH specifies a list of additional directories

that are to be searched when looking for a

particular bitmap file. The format of this

variable and the following PATH variables is

the same as the standard UNIX PATH variable:

a list of directories separated by colons

(:).

MAPVIZWGOALPATH specifies a list of additional directories

that are to be searched when looking for a

particular Graphic Object Animation Language

(GOAL) file.

MAPVIEWIXAGEPATH specifies a list of additional directories

that are to be searched when looking for a

particular image file.

KAPVIIWHLPDIR specifies a directory for storing MapView on-

line help files.

MapView 3.0 - 5 - Using This Guide

3. USING THIS GUIDE

Learning to use MapView is a relatively simple process. It requires

that the user become familiar with the basic features of MapView's

interface. The user interface conforms to Sun Microsystems' OPEN LOOK

User Interface Guidelines.
1

The following conventions are used in this manual:

" Terms in boldface type are either GOAL commands or portions

of GOAL commands, such as object attributes or punctuation

characters. Section 6, "Grapb,.c Object Animation Language

(GOAL)," describes all the commands and gives examples of

their use.

" Terms that are underline represent text that appears on the

screen in interface objects such as buttons, menus, and

window labels.

* Examples of GOAL commands and language syntax will be

contained within a box.

This guide is organized as follows:

* Section 4, "MapView Basics," describes the basic MapView

environment, image area, and control panel. It details all

the features of MapView's interface.

* Section 5, "Tutorial," provides a detailed walk-through of

MapView's various functions. After completing the tutorial,

users will be familiar with most of the major object-

definition, -creation, and -display functions available.

'See: OPEN LOOK Graphical User Interface Application Style
Guidelines, Sun Microsystems, Inc., Addison-Wesley, 1990.

MapView 3.0 - 6 - Using This Guide

Section 6, "Graphic Object Animation Language (GOAL),"

describes GOAL, the language used by MapView. GOAL is a

simple, command-oriented graphics language (or "meta-

language") that allows MapView to interface with various

models and databases through the use of files. Future

versions of MapView will communicate directly with other

programs via Sun Microsystems' ToolTalk interface.

Communication between MapView and the Map Server Interface

program (when rendering vector maps) uses ToolTalk. This

section also provides definitions and attributes of the

terms used in this manual.

MapView 3.0 - 7 - MapView Basics

4. IAPVIW ASICS

This section describes each of the windows and menus that make up

MapView's user interface. Section 5, "Tutorial," provides a step-by-

step walk-through of a typical MapView session. In addition, Section 5

contains instructions for starting up MapView.

Once you have entered the MapView program, you will see one large

window and one small window. In this document, the large window will be

referred to as the Map Window. The Map Window is where all the drawing

and displaying of graphic objects will be done. The small window,

labeled ManView Control Panel, contains the buttons Images, Obiects,

H112, and Exit. The first three buttons are menu buttons, i.e., buttons

that display a pull-down menu when they are selected. These pull-down

menus lead to other dialogs for loading and saving images and GOAL

files, editing objects, drawing, etc., and are discussed in more detail

in Section 5, "Tutorial." Also displayed in the control panel are the x

and y and corresponding longitude and latitude coordinates of the mouse

cursor when it is located within the Map Window.

Throughout this manual, LMB, RMB, and MMB will be used as

abbreviations of the Left, Right, and Middle Mouse Buttons,

respectively. Unless otherwise specified, references to "clicking",

"selecting", or "choosing", objects with the mouse will refer to the

Left Mouse Button.

MOVING AND RESIZING WINDOWS

Modifications to the windows conform to the standard XllR5

conventions:

To move the windows around on the screen, point the arrow cursor

at the top border of the window and click down (and hold down) the LMB.

Position the window on the screen as desired and release the mouse

button. Affecting the position or shape of an object while the mouse

button is held down is often referred to as "dragging" the object.

To resize the windows on the screen, position the arrow on any

corner of the window. Then, with the LMB, drag the corner to the

MapView 3.0 - 8 - MapView Basics

desired size and release the mouse button. NOTE: The size of the Map

Window cannot be made any larger than the image that it contains. It

can be made smaller, in which case the scroll bars become active for

moving around within the image area.

IMAGES MENU BUTTON

The Images menu button is the first of four buttons on the MapView

Control Panel. If you click down using the RMB on this button while

still holding down the mouse button, a pop-up menu with the following

options will appear: Load Imaae. , Load Colorman.... I , and

Save to Rasterfile. To select any of these suboptions, slide the mouse

down the pop-up menu until the desired option is highlighted, and

release the mouse button. Each of these options is discussed in the

following subsections.

Load Image

Selecting the Lod Image option causes a window to be displayed

that contains a scrolling list of image files. You may scroll through

the available image list by clicking on the scroll bar at the side of

the image window. To select an image, click on the name of the desired

image, then select the Load.Imag button in the lower half of the

window. MapView will display a "loading image* message in the lower

border of the Map Window. In addition, as the image file is being read,

a progress window will appear, showing how much of the file has been

processed (depending on the size of the image, this can take a few

seconds).

Load Colormap

Rarely will colormap files need to be loaded explicitly. MapView

automatically opens and reads the colormap file corresponding to the

selected image when the image is loaded. The process of loading a

colormap file is the same as loading an image file. A colormap file is

a regular text file that contains a list of colors (Red-Green-Blue [RGB]

values) that are to be used to display the corresponding image. By

default, a colormap file has the same name as its image file, except

that the filename extension is ".cmsw as opposed to *.image*.

MapView 3.0 - 9 - MapView Basics

Currently, only CAGIS images require colormap files; all other image

file formats contain the colormap information within the image data

file.

Erase Image

The ErA&CIM&= option is useful when you want to view the objects

over a blank, or single-colored, background. To erase an image from the

map area, select the Ee button. An "erasing image" message

will appear in the Map Window. MapView will erase the currently

displayed image and "color* the map area with the background color

(default is black). The background color may be specified on the

command line to MapView with the "-bg" flag (e.g., mapview -bg

MediumSeaGreen).

Save to Rasterfile

This option enables the user to save whatever is displayed in the

Map Window to a rasterfile so that it may be loaded as an image later,

printed on a laser printer, or imported as a frame in an Apple QuickTime

movie.2 To save the Map Window as a rasterfile, select the Save to

£aatrilp button from the Ima= menu. Enter a filename followed by

.ras. Two options (or views) are available when saving the screen to a

rasterfile: Write current view or Write whole view. A whole view is

defined as the whole image (including any portion that might not be

visible in the Map Window because of the position of the scroll bars).

The current view is defined to be that portion of the image that is

currently displayed on the screen. If you want to write out the same

small view of an image, position the window to contain the desired view

and select Write current view. To do so, programmatically within GOAL,

see the command "SnapShot" in Section 6, "Graphic Object Animation

Language (GOAL)."

21n practice, saving one frame at a time interactively is just not
feasible. See the GOAL command Snapshot for more information about
producing successive frames of animation.

MapView 3.0 - 10 - MapView Basics

oDUCImS UM BUTT=O

The Obiects menu button on the Control Panel has the following sub-

options: Define Types.... Create (Draw)., L a. file_., Save file ,

Show by tyne.-., Select/Edit..-., n. Selecting any of these

menu buttons will display a corresponding window that enables the user

to manipulate the graphic objects in various ways. These menu options

are discussed in the following subsections.

Define Types

The Define Types... option allows the user to define new graphic

types (sometimes called "classes" or "templates"), so that objects can

be customized for a particular model, database, or study. Defining new

object templates is also useful in controlling several groups of objects

at one time (for instance, displaying or erasing all objects of a

certain type). New object templates are defined by adding attributes to

the existing "base types" offered by MapView or to previously user-

defined types. Once a new type is defined, it may then be a base type

for future object definitions.

Open the Define New Tvnes window by selecting Define Types... from

the Obiectg button in the main control panel. Type in the name of the

new object class on the 2 1Nmeo line and choose a base graphic type

from the scrolling list located in the top left-hand corner of the

window (labeled R). To add an attribute to this new defini-

tion, type the name of the attribute on the Attribute Name: line and

select the attribute's data type from the scrolling Attribute Types:

window by clicking on its name (Integer, Float Array, etc.). Select the

Add Attribute button and notice that your new object definition, shown

in the New Tye Definition: scrollable window, contains the new

attribute definition. If you make a mistake while defining a type or

adding an attribute, you may use the Delete Attribute, a, or

Clear All buttons to clear the error. When satisfied with the input for

the new object type, click the Define This Type button. The new object

type, once defined, will be added to MapView's Create (Draw)... list and

may now be used as a template for creating instances of this object

type. This new type will also be added to the B list of this

MapView 3.0 - 11 - MapView Basics

dialog so that it may be used as a base class for further hierarchical

definitions.

Create (Draw)...

Another option under the Objects pop-up menu is the Create(DrawL.-

button. Before objects can be created in the Map Window, the user must

select the type of object to draw from the scrolling list labeled Selgnt

Object tve to drawt. Select the desired object type to create and

notice that the appropriate graphics attributes are highlighted and

become available in the window below. Attributes that do not make sense

for a particular object type (e.g., the font attribute for a line

segment object) will be grayed-out. If the object being drawn is not

named, then MapView will give the object a unique name. All graphic

objects must have a unique name. The default names given to objects are

composed of two parts separated by an underscore. The first part is the

object's type (or class), and the second part is a unique number

calculated by MapView (for example: NetworkRegion_42). The attributes

that are active for a given graphic type will be displayed in bold-faced

type on the screen. Some of the attributes have corresponding buttons

that bring up scrolling lists of choices: C, a,

man.. _, Fonts.... Selecting a value in a list causes that value to

be reflected in the attribute for that object. By using the selection

lists, you can set the values of the attributes (color, font, line

width, pattern, etc.) by using the mouse, not the keyboard.

To draw the object once its attributes are set, select the Draw

button, then move the arrow into the map area. Once inside the map

area, the arrow cursor changes into a crosshair. Position the cursor at

the desired drawing location and click the mouse appropriately. Refer

to Section 5, *Tutorial," for specifics about how to draw the different

types of graphic objects. The process of drawing each object differs

slightly because the objects are different; as a whole, the drawing

process resembles similar drawing programs, such as MacDraw. To exit

the drawing mode, click the Don button. As with most pop-up windows in

MapView, the window closes when you click the niamjan button.

MapView 3.0 - 12 - MapView Basics

Load file

To load a GOAL file, select the Load file-., option from the Obiects

button. The Load Objects window will appear with a scrolling list con-

taining all the GOAL files in the current MAPVIEWGOALPATH environment

variable. By default, the MAPVIEWGOALPATH variable contains ".0, so that

any files in your current directory will be displayed in the list.

Select the desired filename (which becomes highlighted and appears on the

Overlays file: line). Load the file by clicking the Load Button, and

dismiss the Ltad Object window by clicking the nigmisa button.

Save file

To save the current set of graphic objects and definitions to a

GOAL file for later retrieval or to send them to a model or other

program, select the Save HIP.., option from the MapView Control Panel's

Objects menu button. Type in a filename (usually ending in ".goal") or

select one from the list provided. Note, however, that saving objects

to an already-existing file will overwrite the contents of that file.

If you try to do this, MapView will prompt you with a message to make

sure that you want to overwrite the file in question.

Show by type

The Show by type window allows the user to display or undisplay

graphic objects according to their type. It is useful for uncluttering

the screen when many objects are displayed. To open the SL/nskw

Objects by Type window, select the show by type.. button from the

MapView Control Panel's Objects menu button. The window that appears

contains a scrolling list of all the currently defined object types.

The objects that are depressed (or highlighted) are currently being

shown and are the default state for all objects. To unshow a class of

objects, just click the object type (thus unhighlighting it). There are

two convenience buttons for showing or unshowing all the graphic types:

Show All Granhic Types and UnShow All Granhic Types. Note that

"unshowing, an object is not the same as destroying one. Unshown

objects may be reshown, whereas a destroyed object must be re-created.

MapView 3.0 - 13 - MapView Basics

ele"ct eMd out...

The Seect and Edit... window provides a variety of options for

selecting, viewing, and editing objects and their attributes. Open this

window by selecting the Select and Edit.-- menu option from the Obiects

menu button off the Main Control Panel. The options in this window are

relevant to all the selected objects. To select an object, click the

LMB near one of its edges. To select more than one object, hold down

the shift key and select other objects. If the objects are relatively

close together, you may select more than one object by clicking down

with the LMB and dragging a box around the desired objects. To unselect

an object, just select it again. Once an object, or set of objects, is

selected, the following options are available from this dialog window:

Td ch=, S Front, qL L, fdiL, UnShow, Back, UnSelect, and

estroy. There are also four arrow buttons that may be used to move the

selected objects around on screen. The number of pixels that an object

moves with each click on one of the arrow buttons is specified by the

value in the Incr item. Selected objects may also be moved by dragging

them around with the LMB from within one of their tagged corners.

Connect

The Connect button is used to connect MapView directly to other

input streams that are presumably connected to other processes.

Currently, this option is only partially implemented. The only option

available to the user is connecting to-MapView's standard input stream.

Click the Standard input button to connect to standard input. MapView

will now be expecting to execute GOAL commands from the window that it

was executed from (probably an xterm or shelltool). If you click this

button inadvertently, you may exit this mode by typing BOY followed by a

Return in the terminal window that MapView was started from.

SM 87TTM

The Held button has three suboptions: General Help. ., AL

SYNTAX..., and BuAReporter. The first two options open windows that

contain the contents of the relevant help files. If the help files are

not available or cannot be found, the windows will display an error

MapView 3.0 - 1 - MapView Basics

message. The Bua Renorter button opens a dialog window that allows the

user to submit a bug or comment about MapView directly to the author via

email. This option works only if your system supports UNIX email. NOTE:

If you are not logged in at RAND, your system must also have access to

the Internet in order for this option to work properly. For more

clarification about electronic mail and the Internet, see your system

administrator. Comments are always welcome by phone.

1=T BUTTON

The Exit button quits MapView. You will be prompted with a message

such as: "Do you really want to exit MapView?- If you exit and have

not saved your work, your objects and their definitions will be lost.

NOTE: MapView does not save graphic objects and their definitions

automatically. If you want to save your work, you must use the Save to

fil option under the Obiects menu from the MapView Control Panel.

MapView 3.0 - 15 - Tutorial

5. TUTORIAL

The previous section outlined the various windows and menus that

compose MapView's user interface. This section walks you through a

typical MapView session (loading images, creating graphic objects,

defining new object types, etc.). It is recommended that you read this

section while running MapView. NOTE: This tutorial does not cover all

the menus in MapView. See Section 4, *MapView Basics,0 for complete

coverage of menus and options.

START UP MAIYIW

To run MapView, make sure that the executable (mapview) is in your

search path and that you are running Sun X11R5 version 3 or higher.

Starting up X11R5 may differ from site to site; usually, typing

openwin once you have logged in will work. If this does not work, check

with your site administrator for specifics. If you are rmnning MapView

at RAND from within the MOSF (Military Operations Simulation Facility),

MapView will already be in your path and you may skip the remainder of

this paragraph. The only other runtime environment setting necessary to

run MapView is access to the standard X1lR5 dynamic libraries. 3 Again,

this is already set up for you in the MOSF.

Start up MapView by typing mapview at your UNIX prompt (in this

example, "tutorial% is the prompt):

tutorial% mapview <CR>

31n UNIX, you may get a list of the dynamic libraries that a
program depends on by using the ldd command (for example: ldd mapview).
Although the directory paths of these libraries may be added to the
LD_LIBRARY_PATH environment variable, it is more desirable to include
the path information at link time with the -L option to cc.

MapView 3.0 - 16 - Tutorial

If you get the statement "MapView: Command not found", check your

environment variables and search path and make sure that the MapVi.ew

program is installed on your machine, and that you have access to the

executable file.

If you get the statement wCannot execute binary file. MapView:

Exec format error', verify the compatibility of your machine with the

version of MapView. For example, you may be attempting to execute a

Sun 3 binary on a Sun 4 machine.

Once MapView is running, you should see two windows on your screen

that resemble Figure 5.1. The smaller of the two windows is the MapView

Control Panel. The four buttons in this window provide the menus that

initiate most of MapView's functions. The Images menu button lists all

options for dealing with images.

The larger window is the graphics window (also called the map area

or Map Window). All images, overlays, and drawing will take place in

this window.

LOAD AN IMAG

Using the Images menu button from the control panel, select Load

Imaae.... Remember that to get a menu button's pop-up menu to display,

you must click down with the Right Mouse Button and not release the

mouse. Slide the mouse down and release it over the desired option (in

this case, Load Imaae.), then release the mouse button. When this is

done, another window appears with a scrolling list of available images.

Select the image "Tutorial.imagem by clicking on the name in the list.

Once selected, the name of the image will appear in the window.

Clicking on the L-ad Filp button will cause MapView to load the

image file and display it in the large window, as shown in Figure 5.2.

Clicking on the figming button in the Load Image window will cause
the small Load Image dialog window to disappear but will not affect the

display in the large window.

MapView 3.0 - 17 -Tutorial

Figure 5.1-Initial MapView Display

Figure 5.2-Load Image File Dialog

MapView 3.0 - 18 - Tutorial

LOAD AN OVERLAY (GOAL) FILE

After pressing the Ojects menu button from the MapView Control

Panel, select Load file, . Another window appears with a scrolling

list of available overlay files. Select the file "Tutorial.goal" by

clicking on the name in the list. The name of the file will now appear

in the window as shown in Figure 5.3.

Clicking on the Load button will instruct MapView to load the

overlay file and display the objects on top of the image in the large

Map Window.

Clicking on the Dismiss button in the Load Objects window will

cause the small Load Objects dialog window to disappear but will not

affect the display in the large window.

CREATE POLYLINE OBJECTS

After pressing the Objects menu button on the Control Panel, select

Create (Draw). Another window will appear with a scrolling list of

available object types, as shown in Figure 2.4. Select the Po1yline

object type by clicking on its name in the list. Change the line width

to 4 by clicking four times on the "up arrow" button next to the line

width: number. To select a color for the object, either type in the name

of the color on the color. line or click on the button labeled Col...

to display a scrolling list of colors to choose from. Remember, the

options that are available are in bold-faced text; those that are not

available are grayed out. Notice, also, that a default object name has

been created for this object already and is displayed on the Ojc'

Name: line in the dialog window.

Once the desired drawing options have been selected, click on the

Dra button. The appearance of the Create Graphic Objects window

changes to show the new object's name and to provide a reminder to

<<Select "Done" when finished>>.

Now move the cursor into the large display window and notice that

its shape has changed to a crosshair. The cursor will always appear

this way when you are in drawing mode. Click where you would like to

begin the polyline. Move the crosshair to another point of your choice,

MapView 3.0 - 19 - Tutorial

and click again. Continue doing so a few more times. When finished,

click the Done button to complete the object-creation process.

MapView 3.0 20 - Tutorial

Figure 5.3-Loading a GOAL File

Figure 5.4-Creating Graphic Objects

MapView 3.0 - 21 - Tutorial

view and Modify the Polyline's Attributes

In order to view the attributes of an object, the object must first

be selected. To select an object, click the LMB near the edge of the

object. The selected object will be displayed with small red squares at

each vertex and end point. The color of the selected objects will also

change to the "foreground" color as specified on the command line to

MapView (e.g., mapview -fg red). The default foreground color is

white.

Using the Objects menu button from the Control Panel, select Selec

aEdi . The Select and Edit dialog will appear as shown in Figure

5.5.

From this dialog window, select the first option under the I

menu button labeled Last Selected. In this case, we are interested in

displaying the attributes of the most recently selected object as

opposed to all the selected objects. A window will appear that displays

the attributes (and their corresponding values) of the polyline object

that you just created, as shown in Figure 5.6.

After examining the attributes, dismiss the I window

(Polyline_4 window in Figure 5.6), but not the Select and Edit window

(you will use this window in the next subsection).

move the Polyline

The four arrow buttons at the right of the Select and Edit window

are used to move objects that have been selected. If no objects have

been selected, these buttons have no effect. The distance the object

will be moved is determined by the "Incr" field in the dialog window.

You can adjust this increment using the small up-down arrows or by

typing a new increment (in pixels) on the line. Set the increment for

any number up to 50 and move the object in any direction, using the

large arrow buttons. Another way to move an object is to drag it by one

of its selection boxes: Click down (with the LMB) inside one of the red

selection boxes of the object you want to move, drag the mouse to the

desired location, and, once there, release the mouse button.

MapView 3.0 -22 -Tutorial

Figure 5.5-Modifying Selected objects

Fi6- r 5.-iwiga6bjc"1ttiue

MapView 3.0 - 23 - Tutorial

Unshow and Reshow the Polyline

To erase the polyline object from the screen, use the left mouse

button and click on the UnSh menu button. The object has not been

destroyed, just moved from the display list to an off-screen hold list.

Since we used the left mouse button instead of the right one on a menu

button, the default menu item (the first) was selected. To reshow the

object, use the left mouse button and select the Show menu button. The

object is now back in the display list and visible on the screen.

Destroy the Polyline

To destroy the selected polyline object, use the Destroy button in

the same manner as the Show and UnLhow buttons above. Once an object is

destroyed, it no longer exists. Dismiss the Select and Edit window.

CREATE ICON OBJECTS

An Icon object is represented graphically by its bitmap. A bitmap

is a two-dimensional array of binary pixels in which each pixel is

either "on* or woff". An Icon's bitmap attribute is just one of the

attributes that define an Icon object. Icon objects have other

attributes such as x and y that specify its location and color which

specifies what color should be used to render the "on" pixels in the

bitmap.

An Icon object can be created by going back to the Create Graphic

Obiects window and selecting Icon. The appropriate attributes for an

Icon object are now active (not grayed out). They include name, color,

and bitmap, and all three attributes have initial default values.

Change the icon's name to Sta (this may be done by deleting the name

that is shown and typing in a new one). Using the left mouse button,

click on the r button to display a window of available colors.

A Colors dialog like that in Figure 5.4 will be shown.

Using the scroll bar in the Colors window, scroll down through the

list until the color of your choice is visible. Select it by clicking

on the color in the scrolling list (LMB). Note that the color you have

MapView 3.0 - 24 - Tutorial

selected now appears in the Create GraPhic Objects window. Dismiss the

Colors window and select the B button in the Create Graphic

Obiect. window. Various bitmaps are available in the Bitmans scrolling

list that appears as shown in Figure 5.7. Several are default bitmaps

that are present whenever MapView is invoked. The additional bitmaps

were defined and created in the Tutorial.goal overlay file that was

loaded earlier. From the Bitmas window, select F t. Notice that

its name has replaced the original bitmap name in the Create Granhic

Obiects window.

MapView 3.0 25 - Tutorial

Figure 5.7-Selecting a Bitmap for an Icon Object

Figure 5.8-Drawing a NetworkRegion

MapView 3.0 - 26 - Tutorial

Place several stars in the large display window by first clicking

on Draw and then clicking inside the Map Window. New object bitmaps and

colors may be changed at any time during the drawing process. When

finished, select none from the Create Graphic Objects window.

CRZATu f DU OBJECTI

NetworkNode objects are drawn the same and look the same as Icon

objects, except that NetworkNode objects can be used as end points in

defining NetworkArcs and as vertices when defining NetworkRegions.

Using the Create Granhic Obiects window, select NeLw-rk ode. The

appropriate attributes for a NetworkNode object are now highlighted and

active. They are the same as for an Icon object. Change the bitmap

attribute to F and draw some NetworkNodes using the same process

you used when drawing the Icon objects. When finished, select Done from

the Create GraPhic Objects window.

CRZTATXITWORKARC ODJUCTS

Now select N from the same window. The NetworkArc

attributes (color and line width) are now active. Select a color and

line width of your choice and click Draw.

Draw NetworkArcs

NetworkArc objects are defined by their two end nodes

(NetworkNodes). To draw a NetworkArc object, click (LMB) close to a

NetworkNode, thereby fixing one end of the NetworkArc. Notice that a

line tracks the cursor movement. To finish drawing the arc, click close

to the NetworkNode that will correspond to the end of the arc. If both

nodes are the same, no arc object is created. Repeat this process as

often as you like. Click Done when appropriate.

NOTE: Since NetworkArcs are defined by their bounding end nodes,

they cannot be moved around on the screen as can other objects (this is

also true for NetworkRegion objects). In order for these objects to be

moved or reshaped, their bounding nodes must be moved (the arcs and

KapView 3.0 - 27 - Tutorial

regions associated with those nodes will automatically snap to the new

locations when their nodes are moved).

c~~&Y = -T, -mNICK OBjiIUY E

NetworkRegion objects are also defined by NetworkNodes. Attributes

available for drawing a NetworkRegion object include color, pattern, and

line width. Select the pattern of your choice from the Patterns-.-- menu

in the same fashion as for bitmaps. Custom patterns (as with bitmaps)

may also be added to the list. See the DefineBitnap and DefinePattern

GOAL commands in Section 6 for more information.

Draw a NetworkRegion Object

Draw a NetworkRegion object by clicking on or near the NetworkNodes

defining its boundary. Continue to click on nodes around the periphery

of the desired region. There is no need to click again on the first

node to close the loop. MapView will do this for you when you click

Done. Figure 5.8 shows the Create Granhic Objects window and the Color

dialog while a NetworkRegion is being drawn.

MOVE A NTWORENODU

Select one of the NetworkNode objects that bounds one of the arc

or region objects that you have drawn. Drag the node to another

location by clicking down (and holding) the LMB on one of the selection

boxes that surrounds the selected node. When you release the mouse to

position the node, notice that the arcs and regions that use that node

have reshaped themselves according to its new position. Selected

objects may also be moved by using the positional arrows in the Selec

and Edit window.

DUSTROY A NRTORKODR

Destroying a NetworkNode also destroys any arc referencing that

node and removes that node reference from any region. To demonstrate

this, destroy one of the NetworkNode objects you just created. Once all

the nodes that bound a region have been destroyed, the region object

will be destroyed automatically. Note, however, that the reverse is not

true. Destroying arcs or regions will never affect any node objects:

MapView 3.0 - 28 - Tutorial

Node objects are independent; they are not defined (or bounded) by any

other objects. Selected objects may also be destroyed by hitting the

delete key.

CRZTL CIRCLI ODBUCYS

Using the Create Granhic Obiects window, select rircle. The

appropriate attributes for Circle objects are now active. They include

color, line width, and pattern. Click Draw and place the cursor where

you want the center of the circle to be. Click and release the cursor.

The outline of a circle will now follow the cursor as it moves away from

the center. Click the mouse again when the circle is the desired size.

Repeat this process for as many circles as you like, and click Done when

finished.

CRNATZ TEXT OBJUCTO

Text objects are handled the same as are all the other graphic

objects: When you select Text as the drawing object class, its

attributes will become active. Attributes include color, font, and

value, a value being the actual lettering of the text object. Select

the color and font of your choice, then type in the "value" of your text

object on the text line. The text may be edited before or after the

object is placed, but it saves time to have it written correctly before

initial placement on the display. To place the text, click Draw and

place the cursor where you want the text to begin. As the cursor enters

the display area, it changes its shape to a crosshair and a text box to

show the dimensions of the text. Click and release the cursor and the

text will appear. An example of the fonts available for the Text object

can be seen in Figure 5.9. As with the other objects, any of the

appropriate graphic attributes (in this case, color, font, and value)

may be changed at any time during the drawing process. In other words,

to enter a second Text object with a different color and font, you do

not need to exit the drawing operation. After a few Text objects have

been placed on the screen, click Done.

MapView 3.0 - 29 - Tutorial

SAVE ODJECT8 TO A GOAL VILE

Up to this point, you have created a number of graphic objects and

displayed them over an image. To save these objects to a GOAL file, an

ASCII file that contains graphics commands, select g from the

Obiecta menu button. The Save Obiects dialog window will appear. Type

in a filename (e.g., "test.goal") or select one from the scrolling list.

If the file already exists, MapView will warn you that you are about to

overwrite the contents of another file. You will be given a chance to

enter a new filename or go ahead and overwrite the existing one.

VIXW TH GOAL FILE

To view the file that you have just created, execute the following

UNIX command from another xterm or shelltool window:

tutorial'% aore test.goal <CR>

Notice the commands in this file that correspond to the objects

that you have created in addition to those objects that originated in

Tutorial.goal. When you are finished, return to the MapView Control

Panel and exit MapView.

RZLOAD THE GOAL FILE

Restart MapView and load the GOAL file you just saved by selecting

the Load File.. option from the Objects menu button. The image and

objects should all be displayed on the screen just as they were when you

exited MapView.

DEFIN A NW GRAPHIC OBJECT TYPE

To define a new graphic object type, from the Objects menu button

on the MapView Control Panel, select Define TYPES.... The fin Ne

Types window will appear. See Figure 5.10. To derive a new graphic

object type from an existing type, first select the base graphic type

by clicking on Polyline in the R T scrolling list. Notice that

MapView 3.0 - 30 - Tutorial

the base-type text attribute is filled with Polyline and the Polyline

object's attributes are listed in the New TYne Definition scrolling

list.

To give this new graphic type a name, enter "River" on the Type

Name line. Type the word "Depth* on the Attribute Name line. Declare

this attribute as type Float by clicking on Float in the Attribute Tves

scrolling list. Now add this new attribute by clicking the A

Atibute button. Notice that this attribute appears in the New Tye

Definition scrolling list. To inform MapView of this object type

definition, click on the Define This Type button. At this point, our

new graphic type, River, appears in the B scrolling list,

allowing us to hierarchically define graphic objects. In other words,

we can now define a new graphic object type based on the object type

River.

CREATE INSTANCES OF THIS NW TYPE

Using the Objects menu button from the Control Panel, select

CreLflraw. Our new type will appear at the bottom of the Create

Graphic Obiects window. Select the object River by clicking on its name

in the list, and draw an object of type River as you would a Polyline.

SAVE THE SCREW TO RASTERFILE

The entire display may be written out to Sun Microsystem's graphics

image file format, rasterfile. To save the display as a rasterfile,

dismiss the Create Graohic Obiects window and select Save to rasterfile

under the Imaaeg menu button. The default name is "mapview.ras", but it

may be changed to any name of your choice. Change the name now and

click Write whole view. Once the image has been saved, exit MapView by

clicking the Exit button on the Control Panel and Yes on the resulting

confirmation window. Reenter MapView and load the new image that you

just saved (see LOAD AN IMAGE, p.16). Notice that the objects are

actually part of the image now and are no longer selectable. This is an

example of how you would augment an existing image with roads, cities,

etc.

MapView 3.0 31 - Tutorial

Figure 5.9-Creating Text Objects

. W2 ,.a , i

Figre 10De finiVng .Nwrahi.T

Figure 5.10-Defining New Graphic Types

MapView 3.0 - 33 - GOAL

6. QRAPHIC OBJUCT ANIMATION LANGUAGH (GOAL)

GENERAL STRUCTURE

Graphic Object Animation Language (GOAL) is a simple, command-

oriented language. The syntactic structure of GOAL resembles that of

C++; however, at present, there are no conditional or looping constructs

available in GOAL. All commands begin with a keyword and are optionally

followed by a parameter or block of information enclosed in braces "(",

"P.

Most GOAL commands affect one of two internal linked lists: the

display list and the hold list. The hold list is used to hold new and

unshown objects. As its name implies, the display list contains the

objects that are currently displayed on the screen.

GOAL Comands

The following subsections comprise the commands, their

descriptions, and examples of their use. The commands are listed in

alphabetic order. Examples of GOAL commands will be outlined in boxes

below. In addition, the "#" character represents the beginning of a

comment in GOAL. In other words, all characters after the "#" up to the

end of the line are ignored by the command interpreter.

BackGraphic

The BackGraphic command may be used to move an object to the back

of the visual stack (i.e., overlapping objects will appear in front of

the specified object). This command takes the name of a graphic object

(or an object type) as its only parameter. See also FrontGraphic. For

example:

MapView 3.0 - 34 - GOAL

BackGraphic myObject # just this object moves back
BackGraphic myObjectType # all objects of this type move back

CreateMenu and AttachMenu

MapView's user interface may be extended to permit addit.onal menu

items and submenus, or pull-right menus, to be attached to MapView's

default menu. The default menu (also called the "Main Menu") pops up

when the right mouse button is held down while the cursor is somewhere

over the Map Window. As a default, the main menu contains the following

three items:

SSlSelecting this option will redisplay

the control panel if it was unpinned,

dismissed, or hidden

" Refresh Selecting this option will cause all

the graphic objects and the

underlying map to be redrawn

" Exit MaDView Selecting this option offers yet

another way to exit MapView.

Additional menu items will appear in the main menu below the three

default menu items listed above. The actions taken by the selection of

these new menu items can be defined using GOAL or extended by any of

countless UNIX utilities, programs, scripting languages, etc., as the

following examples make clear.

There are two commands that facilitate creating and using menus.

These are the CreateMenu command and the AttachMenu command. The

relationship between these commands is analogous to that between the

CreateGraphic and ShowGraphic command: Menu objects are instantiated by

using the CreateMenu command, but they are not displayed until they are

attached to the Main Menu. For example, to create a simple menu with

MapView 3.0 - 35 - GOAL

three items in it and attach the menu to the Main Menu you could do the

following:

CreateMenu "Extra Menu Options"
{

item = ("xterm", "Run \"xterm -fn screen-10&\"");
item = { "shelltoolo, "Run \"shelltool&\"");
item = { "save objects", "SaveToFile save.goal" };

)

AttachMenu "Extra Menu Options"

In this example, there are three distinct menu items, each with

only one acLtion to be taken upon selection. The item attribute in this

case is of type StringList and is structured in the following way: The

first item in the string list is the label of the menu item (which is

what the user will see). The second and remaining items in the string

list are the commands to be executed upon selection of that item.

Commands requiring double quotes (as in the Run command) must have their

embedded quotes preceded by a backslash so that the language parser

knows that this quote does not signify the end of the string.

In the above example, the Run command is used to pass the following

string onto the UNIX shell. Each of the commands passed to UNIX will be

executed in the background (since the "&" was used). Background

execution will allow MapView to continue to process the rest of the menu

item's commands (if any exist) immediately. If the desired effect is to

wait (or synchronize) the actions, then you would not append the "&" at

the end of the Run commands (MapView will wait until UNIX returns before

processing the next action).

To create submenus (sometimes called pull-right, or walking menus)

you use the attribute menu instead of item. For example, let us create

a new menu and make the menu we defined above one of its submenus:

MapView 3.0 - 36 - GOAL

CreateMenu "My Root Menu"
{

menu = "Extra Menu Options";

AttachMenu "My Root Menu"

In this example, we have created a menu with the label "My Root

Menu" and given it one pull-right menu, which is the one we defined

before. The menu attribute is of type String. A menu may have as many

item and menu attributes as you like and may be nested to virtually any

depth. Also, all pull-right menus may be pinned-thus allowing

continuous display of often-used menus deep in the menu hierarchy.

CreateGraphic, CreateAndShowGraphic

The CreateGraphic command is used to instantiate a graphic object.

When an object is created, MapView places it in an internal list called

the hold list. In order for this new object to be displayed, it must be

moved to the display list by the ShowGraphic command. This allows the

user to create many objects (off-screen) and then display them all at

the same time.

If you want the object to be displayed as soon as it is created,

use the CreateAndShowGraphic command. Each create command has the same

syntax. In the example below, an object of type "AirBase" is created.

The AirBase object type is defined later under the DefineGraphicType

command. To create an instance of an AirBase object enter the

following:

MapView 3.0 - 37 - GOAL

CreateGraphic airbasel : AirBase
I

ion = 36.50;

lat = 24.25;
color = "DarkBluen;

name = 'Edwards AFB;
nRunways = 5;

active = True;
I

In this example, "AirBase" is the object's graphic type and

"airbasel" is the name we will give to this instance of an AirBase

object. The braces "{ and "" that enclose the block are necessary;

however, the initializations inside the block are not. The user may

initialize any of the object's attributes inside this block. Any

attribute not initialized will get initialized automatically to the

appropriate value for its type (integers and floats are initialized to 0

and 0.0000, respectively; strings are initialized to NULL; and elements

of arrays are initialized according to their type).

NOTE: The bitmap attribute is not initialized here. Its value

will be initialized to the value set in the class definition (see

DefineGraphicType). For more information on bitmaps, see the

DefineBit map command.

The other attributes that were given default values above (color,

nRunways, name, and active) are being reset in this CreateGraphic

command. The positional attributes that are not set above, i.e., x and

y, are set to the appropriate screen coordinate automatically.

DefineBitmap

An Icon object's graphical representation is stored in its bitmap

attribute. Since Icon objects often share the same graphical

representation, MapView stores just one copy of each unique

representation (or bitmap) in a list. The DefineBitmap command is used

to load a graphical representation from a file, associate a name with

MapView 3.0 - 38 - GOAL

it, and store it in the bitmap list. Once a bitmap is defined, Icon

objects may reference it by name. For example, to load the image of an

airbase, issue the command:

DefineBitmap AirBaseBitmap

file = "airbase.icon*;
}

The file, airbase.icon, was created using Sun's iconedit program.

Other icon file formats (e.g., Xll bitmap format) will be recognized in

later versions of MapView. There are a number of predefined bitmaps in

MapView.

Now that we have defined a suitable representation, we instantiate

two Icon objects that use this bitmap:

CreateGraphic airbase2 : Icon
(

bitmap = "AirBaseBitmap";
I

CreateGraphic airbase3 : Icon

bitmap = "AirBaseBitmap';

Bitmaps and patterns are interchangeable. For example, you may set

the pattern attribute of a Polygon object to one of the defined bitmaps,

thereby tiling the polygon with copies of that bitmap image; or you may

set the bitmap attribute of an Icon object to one of the defined

patterns.

KapView 3.0 - 39 - GQAL

DofineZumratedfyve

The DofiaUminratodryp command is used to define an enumerated

data type. Enumerated variables can only take on one ci the values in

its enumeration list. Unlike the C programming language, enumerations

in MapView are not synonymous with integers. After a new enumerated

data type is defined, variables of this type may be declared in a

DefineGraphicType definition. For example, define an enumerated type

Boolean that has two values:

DefineEnumeratedType Boolean { True, False }

DefneGraphicType

The DefneGraphicType command defines a new graphic type. It

provides flexibility by enabling the attributes of the graphic type to

be tailored to the user's needs. New graphic object types are derived

from existing ones by adding attributes. At this time there is no

mechanism in MapView to mask (or hide) attributes from derived base

classes. To define a custom object type called *Airbase" that has three

new attributes, enter the following:

DefineGraphicType AirBase : Icon
(

Integer nRunways;
String name;
Boolean active; #enumerated type

)

In this example, DefineGraphiType is the keyword for the command;

Icon is the base graphic type of this new type; and Airbase is the name

of this new object type. The ":" is best read as "derived from type.

The braces "(" and "I" that enclose this block are necessary; however,

the additionally defined attribute list is optional. Our new AirBase

MapView 3.0 - 40 - GOAL

object type has three new attributes in addition to those that are

inherited from the base class Icon. The attribute active is an

enumerated variable as defined above under the Doeinmnienated2Vpe

command.

If default or initial values for any of the attributes are desired,

they may be set at type-definition time, so that all instances of this

type are initialized with the values provided. In object-oriented

terminology, such setting represents very simple object constructors.

An example of setting default values is shown below. Any and all of the

attributes, either defined or inherited, may be initialized.

DefineGraphicType AirBase : Icon
{

Integer nRunways = 2;
String name = "default airbase*;
Boolean active = False;

color = "LightBlue";
bitmap = airbase.icon";

DefinePattern

Patterns, like bitmaps, are stored in a list by MapView. Instances

of the Polygon, Circle, and NetworkRegion objects use their pattern

attribute to describe their fill pattern. The DefinePattern command is

used to load a graphical representation for a fill pattern from a file

and associate a name with it. To load a custom fill pattern from a

file, issue the command:

DefinePattern CrossHatch
f
file = "crosshatch.icon";

I

MapView 3.0 - 41 - GOAL

The file, crosshatch.icon, was created using Sun's iconedit

program. Other icon file formats (e.g., Xll bitmap format) will be

recognized in later versions of MapView. There are a number of

predefined patterns in MapView.

To create an object that uses our defined pattern, CrossHatch,

issue the following command:

CreateGraphic areal : Polygon
{

pattern = OCrossHatchm ;
I

Destroyraphic

The DestroyGraphic command destroys graphic objects. If the

parameter passed to the command is an object type rather than an

object's name, however, all instances of this type are destroyed. For

example:

DestroyGraphic airbasel #destroys one instance
DestroyGraphic AirBase #destroys all instances

DestroyAllGraphics

The DestroyAllGraphics command takes no parameters and destroys all

graphic objects. The objects are removed from both the hold and display

lists. Type definitions are not affected.

DestroyaraphicType

The DestroyGraphicType command will destroy a graphic type

definition by first destroying all objects of the specified type before

destroying the type i-self. Use this command with caution: there is no

MapView 3.0 - 42 - GOAL

UnDo command. To destroy the AirBase graphic type and all instances of

this type, issue the command:

DestroyGraphicType AirBase

UrasIuage

The UraseImag* command takes no parameters and is used to erase the

background image and redraw it using the background color. The

background color defaults to black, but can be changed using the "-bg"

option on the command line. See Appendix A for a discussion of command-

line arguments.

FrontGraphic

Use the FrontGraphic command to move an object to the front of the

visual stack (i.e., other objects will appear behind this specified

object). This command takes the name of a graphics object (or an object

type) as its only parameter. See also Backoraphic.

LoadColormap

The LoadColoraap command loads a new palette of colors

corresponding to a CAGIS image file. This new palette may drastically

affect the colors in the current image, because the colormap defines the

colors to be used for each pixel value in the CAGIS image. The graphic

objects, however, may or may not be affected. The objects will search

the new colormap for the closest match (on hue, saturation, and value)

to their color attribute. If a satisfactory match is not found, then

the desired color will be loaded into the current colormap.

In the event that the colormap is full and no new colors may be

loaded, MapView will assign the best color to the object it can. When

this happens, you might notice that objects that were a rich blue appear

MapView 3.0 - 43 - GOAL

light blue. It is for this reason that, when making CAGIS images and

their corresponding colormaps, you should reserve some room for other

colors. As a rule, using no more than 128 colors will usually prevent

such changes. To load a new colormap, issue the command:

LoadColormap olighter.cmsm

LoadImage

The LoadImage command loads a Sun rasterfile or CAGIS image from a

file and displays it on the screen. By convention, CAGIS image files

have the extension O.imagem and Sun rasterfiles have the extension

".ras'. CAGIS image files require a corresponding colormap file.

MapView will automatically load this file if it has the same filename as

the image and the extension O.cms". Sun rasterfiles contain their own

colormap information and do not require a separate colormap file. To

load an image, issue the following command:

LoadImage "file.imagem

MapView will load the file "image.cmso if it exists. If this file

does not exist, the image will be loaded and displayed using the current

or default colormap.

MoveGraphic

There are actually four distinct MoveGraphic commands:

MoveGraphicRel, MovefraphicAbz, MoveGraphicLLRel, and MovoGraphicLLAbs.

Each of these commands takes three parameters: the name of the object,

and a pair of coordinates that represent an absolute position (Abs) or a

relative offset (Rel). The latter two commands (those with the LL in

MapView 3.0 - 44 - GOAL

their name) expect their coordinate pair to be given in degrees of

longitude and latitude. The other two commands take integers specifying

the x and y locations, or offsets, in pixels. An example of each

command is shown below:

MoveGraphicAbs airbasel 100 50
MoveGraphicRel airbasel 5 5
MoveGraphicLLAbs airbasel 54.6 37.8
MoveGraphicLLRel airbasel 1.0 1.0

A MoveGraphic command performs the same function on an object's

position as an UpdatoGraphic command. But if the object's position is

the only attribute being changed, a MoveGraphlc command will perform the

change much faster.

Run

The Run command takes a double-quoted string as its only parameter.

The string is not processed by MapView but is passed on to a UNIX

subshell. This command, when used from within a custom menu, will

execute a program or script that processes some of the current objects

and returns either new objects or updates to the current ones. Since

the Run command takes a quoted string as its parameter, a backslash

("\") must appear before any embedded quotes. One example of how to use

the Run command to process some graphic objects would be the following:

SaveSelectedObjectsToFile objects.goal
Run "myprogram < objects.goal > newobjects.goal"
LoadFile newobjects.goal
Run "/bin/rm objects.goal newobjects.goal"

MapView 3.0 - 45 - GOAL

It is natural to see how this functionality would be very useful

from within user-defined menus. For examples of how to use the Run

command in conjunction with menus, see Createaenu and Attachuwu.

SaveAllObjoctsTofile, AppendAllObjectsTo~ile

The saveAllObjectsToFile and AppndAllObjectsTo~ilo commands are

used to save the definitions of all objects to a GOAL file. Each takes

the name of the file as its only parameter. The Save version will

overwrite an existing file with the same name (it will prompt you

first), and the Append version will just append the definitions of all

the objects to the file specified.

SaveAllObjectsToFile foo.goal
AppendAllObjectsToFile foo.goal

SavoSoloctedObjoctsToile, AppendSelectedObjectsToFile

The SavesoloctedObjectsToFile and AppendgelectedObjectsTofile

commands are used to save the definitions of selected objects to a GOAL

file. Each takes the name of the file as its only parameter. The Save

version will overwrite an existing file with the same name (it will

prompt you first), and the Append version will just append the

definitions of the selected objects to the file specified.

SaveSelectedObjectsToFile foo.goal
AppendSelectedObjectsToFile foo.goal

8aveTypedObjectsToFilo, AppendTypedObjectsTofile

The SaveTypedObjectsToFile and AppendTypedObjectsToFile commands

are used to save the definitions of all objects of the specified type to

MapView 3.0 - 46 - GOAL

a GOAL file.4 Each takes two parameters: the name of the object type to

be saved and the name of the file to write the definitions to. The Savo

version will overwrite an existing file with the same name (it will

prompt you first), and the Appond version will just append the

definitions of all the objects to the file specified.

SaveTypedObjectsToFile Airbase foo.goal
AppendTypedObjectsToFile Airbase foo.goal

SelectGraphic, UnSelectGraphic

The SelectGraphic and UnSelectGraphic commands provide a means of

selecting and unselecting an object by name. Selected objects are

rendered with little selection boxes either around the vertices of the

object (as in Polylines and Polygons) or around the bounding box of the

object (as in Circles and Icons). Once selected, objects can be

manipulated as a group by a number of other commands. For example:

SelectGraphic airbasel
UnSelectGraphic airbasel
SelectGraphic AirBase

Note in the third example that an object type (or class), AirBase,

was specified, which will cause all objects of that type to be selected.

setWindowBounds

The SetWindowBounds command is used to set the geographic

information for the Map Window. The command is written out by MapView

4The SaveTypedObjectsToFilo command does not currently exist. The
same functionality can be achieved by using the two commands
"SelectAllGraphice <type>" and "8avoSelectedObJectsTovile <file>".

MapView 3.0 - 47 - GOAL

as part of each of the Save commands and is the first command in the

GOAL file. MapView uses this information when no other information

abouz an underlying image is supplied (as is the case with all image

types except CAGIS images. CAGIS images contain their geographic

information within the image header). When the vector map is being used

as the background image, such geographic information is necessary so

that MapView will know what part of the world the Map Window was

displaying at the time the objects were saved.

The syntax of the JetWindowBounds command is shown in three

examples. The f:,rst example has a coordinate system composed of integer

x's and y's that represent pixels and sets the Map Window dimensions to

800 by 600 pixels. A map projection of type 'pixel* signifies that

MapView is to remain in pixel mode (lats and ions are meaningless).

SetWindowBounds {
projection = "pixel";
pixel_width = 800;

pixel-height = 600;

The second example is a SetWindowBounds command for a CAGIS

geographic (geogrph) projection image. All CAGIS images require the

corner points of the image, as well as the width and height of the image

in pixels, to be specified. The projection must also be specified. A

command such as this could be used to orient the Map Window to a

rectangular geographic region where your data might be drawn even if you

have no image to display underneath to provide a geographic reference.

MapView 3.0 - 48 - GOAL

SetWindowBounds
projection = "geogrph';
pixel_width = 800;

pixel-height = 800;

lon_min = 47.770;
lonmax = 48.018;

lat_min = 29.199;
lat_max = 29.415;

The third example demonstrates the format of the SetWindowBounds

command for a vector map image. The coverage area of the window is

specified using a center point and a nautical mile width. This is a

useful way of identifying the location of the image for perspective map

projections where the corner points might not be defined (as is true

when you have zoomed out far eno -n to see the whole globe). See

Appendix B for a list of all the map projections available.

SetWindowBounds {
projection = "mercator";
pixelwidth = 800;

pixelheight = 800;
cen lon = 46.00;

cenlat = 29.30;

nauticalmilewidth = 200;
}

SuowAlloraphics

The ShowAllGraphics command takes no parameters and causes all

graphic objects to be displayed or refreshed. All objects on the hold

list are moved to the display list, and the display list is redrawn.

MapView 3.0 - 49 - GOAL

ShowGraphic, MUnhowGraphic

The ShowGraphic and UnShoworaphic commands take as their only

parameter the name of a graphic object. The ShowGraphic command causes

the specified object to be rendered. A side effect of this command is

that the object will be displayed at the front of the visual priority

(i.e., all other objects will be behind it). The UnShowGraphic command

erases the specified object (but does not destroy it). All unshown

objects are stored in an off-screen display list called the hold list.

For example:

UnShowGraphic airbasel # erase it
ShowGraphic airbasel # redraw it

The ShowGraphic command is like most commands that take one

parameter (e.g., an object's name) in that it may also take an object's

type as a parameter. Thus, to display all objects of type AirBase, you

could execute the following command:

ShowGraphic AirBase

SnapShot, SnapShotArea

The SnapShot and SnapShotArea commands are used to capture the

screen (or a portion of the screen) and save it to a Sun rasterfile.

SnapShot will save the whole screen to a rasterfile, whereas

SnapehotArea will save only the subregion specified. These commands are

very useful when you want to make a QuickTime movie (or some equivalent

animation) and you would like to periodically save the current graphics

screen as a "frame" in a movie. The syntax for each of these commands is

demonstrated in the following example:

MapView 3.0 - 50 - GOAL

SnapShot frame_l.ras
SnapShotArea frame_l.ras 100 100 640 480

Here, framel.ras is the filename. For the SnapShotArea command,

the four integers represent x, y, width, and height. The x and y are

measured from the upper left corner of the screen (positive y-direction

is downward).

UpdateAndShowGraphic

The UpdateAndShowGraphic command is the same as an UpdateGraphic

command followed by a ShowGraphic command. The syntax is the same as

for the UpdateGraphic command. The command is useful when you are

updating relatively few objects or when you want each object's update to

be reflected right away.

UpdateAndShowSelectedGraphic

The UpdateAndShowSelectedGraphic command updates the selected

object and redraws it immediately. This command has the same syntax

(inside the braces) as the two previous Update commands, with one

exception: No object name is specified here. The object that is

affected is the currently selected object (if one exists). This command

is helpful when used from within a menu object (see CreateMenu and

AttachMenu above) because it allows the user to select an object with

the mouse and then perform a set of actions (defined by a menu item) on

that object without having to mention its name. An example of the

syntax for the UpdateAndShowSelectedGraphic command is as follows:

MapView 3.0 - 51 - GQAL

UpdateAndShowSelectedGraphic
{

color = "SlateBlue";
I

Updat*Graphic

The UpdateGraphic command is used to update some or all of a

graphic object's attributes. The object is not redrawn as a result of

this command; rather, the user updates numerous objects and displays the

results all at once (with a subsequent ShowAllGraphics command). The

syntax inside the braces of this command is exactly the same as that of

the CreateGraphic command. An example of updating the AirBase object

defined above is

UpdateGraphic airbasel
{

color = "Red';
nRunways = 3;

active = False;
I

UpdateGraphic Operators: -, -e, -- , --

Attributes, in addition to being defined, initiali d, and set, may

also be incremented and decremented, and have items appended, prepended,

removed from the front, or removed from the back. The operators that

perform these functions are "+=", "=+", "-=a, and "=-" For such scalar

attributes as integers and floats, the different incrementing operators

(*+=* and "=+") perform the same function. This is also true for the

decrementing operators (*-=" and "=-"). For strings, however, the "+="

prepends the specified string, whereas the "=+" appends the string. The

"-=" removes the desired string (if it exists) from the front of the

MapView 3.0 - 52 - GOAL

string; the 0=-O removes the string from the tail end. In the case of

string lists and arrays, on the other hand, these operators affect

elements at either the beginning or the end of the list or array.

Examples of these operators are as follows:

UpdateGraphic airbasel
{

color += "Light"; # prepend the word Light
nRunways -= 1; # decrement by one

strlist =+ { "append this", "and this" };
farray { 3.14 2.71828 1;

Here, the word "Light" is prepended to whatever the color was

before. On strings, the "-" and "=-" operators will remove the first

occurrence of the substring from either the left or right of the string,

respectively. Also, nRunways is decremented by one. The StringList

attribute, strlist, is having two strings appended to it. Finally, the

Float array, farray, attribute is having two of its array values removed

(the first occurrences from the right).

ViewFile

The ViewFile command takes a filename as its only parameter. The

file (if it exists and is readable) will be displayed in a text window

(xview editor) on the screen. This command is useful for displaying

custom help files from within user-defined menus or anytime you would

like to show, and allow the user to modify, the contents of a particular

file. Its syntax has the following form:

ViewFile foo.data

KapView 3.0 - 53 - GOAL

This section lists all the built-in graphic types in MapView and

describes each of their attributes.

Bame T pes

All graphic objects are derived from one of the defined base types

listed below. The base type of a graphic object determines what kind of

object it is (for example, a Circle or an Icon). Each type of object

has a set of attributes that specify the size, color, location, and, in

some cases, the pattern or font for the object. It should be noted that

all objects have attributes that permit them to be manipulated in both a

pixel-based Cartesian coordinate system and a geographic latitude and

longitude coordinate system. Usually, you will update an object's

position in one system or the other, not both.

Pixel

The Pixel object takes up one pixel on the screen and has the

following attributes:

" color the color of the pixel.

* x the x-coordinate in pixels

" Y the y-coordinate in pixels

" lon degrees longitude

• lat degrees latitude.

Linesegment

The LineSegment object is defined by two end points. Its

attributes are defined as follows:

* color the color of the line

* width the line width of the line in pixels

" Xl, yl the x- and y-coordinates in pixels of one end of

the line

" x2, y2 the x- and y-coordinates in pixels of the other

end of the line

" loul, latl degrees longitude and latitude of one end of the

line

MapView 3.0 - 54 - GOAL

= l2, lat2 degrees longitude and latitude of the other end

of the line.

Polyline

A Polyline object is a set of connected line segments. The line

width and color of the Polyline object apply to all segments in the

polyline. Its attributes are defined as follows:

" color the color of the polyline

" width the line width of the polyline in pixels

" points an array of x's and y's that specifies the

vertices of the polyline

• lonlats an array of longitudes and latitudes that

specifies the vertices of the polyline.

Polygon

A Polygon object is described by a set of points at its vertices.

It may be filled with a pattern or unfilled. The border has a variable

line width; if the line width is zero, the border is not displayed. Its

attributes are defined as follows:

* color the color of the polygon

* width the line width of the border in pixels

" points an array of x's and y's that specifies the

vertices of the polygon

* lonlats an array of longitude and latitudes that

specifies the vertices of the polygon

" pattern a pattern that will be used to fill the polygon.

If no pattern is specified, the polygon will be

transparent. (See the DefinePattern connand for

details.)

Circle

A Circle object is described by a center point and a radius. It

may be filled with a pattern or unfilled. The border has a variable

line width; if the line width is zero, the border is not displayed. Its

attributes are defined as follows:

MapView 3.0 - 55 - GOAL

" color the color of the circle

" x the x-coordinate of the center in pixels

* y the y-coordinate of the center in pixels

" la degrees longitude of the center

" lat degrees latitude of the center

" width the line width of the border in pixels

" pattern a pattern that will be used to fill the polygon.

If no pattern is specified, the polygon will be

transparent. (See the DefinePattern command for

details.)

" radius the radius of the circle in pixels

" nautical_milen the radius of the circle in nautical miles.

Icon

The Icon object is represented on the screen by a bitmap that can

be created using either the Xll bitmap program or Sun's iconedit

program. It has the following attributes:

" color the color of the icon

* x the x-coordinate of the icon in pixels

* y the y-coordinate of the icon in pixels

" Ion degrees longitude

" lat degrees latitude

" bitsmp the name of the bitmap. (See the DefineBitnap

command for details.)

Te3Ft

The Text object is used to display strings of text in varying fonts

and colors on the screen. It has the following attributes:

" color the color of the text

* x the x-coordinate of the text in pixels

" y the y-coordinate of the text in pixels

" Ion degrees longitude

" lat degrees latitude

" value the actual text

" font the name of the font. All Xll font names are

recognized.

MapView 3.0 - 56 - GOAL

Network

The Network object does not have its own shape. A Network is

defined by the other objects that it contains. It can contain

NetworkNodes, NetworkArcs, and NetworkRegions. It has the following

attributes:

" nodes a StringList of NetworkNode objects

" azcs a StringList of NetworkArc objects

" regions a StringList of NetworkRegion objects.

Network~ode

A NetworkNode object is similar to an Icon object. The only

difference is that a NetworkNode object can be used as an end point of a

NetworkArc object. It has the following attributes:

" color the color of the icon

* x the x-coordinate of the icon in pixels

* y the y-coordinate of the icon in pixels

" lon degrees longitude

" lat degrees latitude

" bit=mp the name of the bitmap. (See the DefineBitmap

command for details.)

NetworkArc

A NetworkArc object is a line segment that spans two NetworkNodes.

It has the following attributes:

• color the color of the arc

" width the line width of the arc in pixels

" nodel the first of the two NetworkNodes

• node2 the second of the two NetworkNodes.

NetworkRegion

A NetworkRegion object is similar to a Polygon object, except that

a NetworkRegion is defined by a set of NetworkNodes at its vertices. It

has the following attributes:

" color the color of the region

* width the width of the outline in pixels

" nodes a StringList of NetworkNode objects

MapView 3.0 - 57 - GOAL

pattern a pattern that will be used to fill the region.

If no pattern is specified, the region will be

transparent. (See the DefinePattern command for

details.)

MapView 3.0 - 59 - Appendix A

COIMAD-LI3 ARGUMEW

MapView's command-line arguments are listed below in its

*usage" statement. The usage may also be displayed by typing

"mapview -h'.

Usage: napview [options] [debug-options]

options:

-I path additional directories to search for
images (separated by 0:'). The default is

".:./GIS:$MAPVIEWHOME:$MAPVIEWHOME/GIS:$MAPVIEWIMAGEPATH'

-G path additional directories to search for .goal

files (separated by ':'). The default is

'.:./GIS:$MAPVIEWHOME:$MAPVIEWHOME/GIS:$MAPVIEWGOALPATH

-B path additional directories to search for
bitmap files (separated by N:'). The

default is

".:./GIS:$MAPVIEWHOME:$MAPVIEWHOME/GIS:$MAPVIEWBITMAPPATH

-H directory directory of help files (default is

$MAPVIEWHELPDIR)

-cuap file use 'file' as the initial colormap file

-f font set default font to *font"

-g file load this GOAL file on startup

-h or -help print this message

-i file load this image file on startup

-ih pixels set the Map Window height to "pixels"

MapView 3.0 - 60 - Appendix A

-iw pixels set the Map Window width to "pixels"

-is pixels set the width and height to "pixels"

-Vd n set pixel distance sensitivity for object
selection to n pixels (default = 50)

-p n set the number of commands to process
between checks for a Pause request
(default = 5)

-bg color set the background color of the Map
Window. Standard X color names may be

used here in addition to the rrrgggbbb
syntax (e.g., #00ffOO to specify green)

-fg color set the foreground color. This option is
used as the default drawing color; it is
also the color objects will turn when they
are selected (default is white)

-yia color set the color of the vector map lines
(default is orange)

-log file log the MapView session to file "file"
(default is $MAPVIEWHOME/lib/MapView.log)

-nolog do not log the MapView session

-maxpoints npts set default max array length to npts
(default is 1000)

-x x_offset x offset hint for window manager measured
in pixels (default is 300)

-Y y.offset y offset hint for window manager measured
in pixels (default is 0)

-exact_color match color requests exactly. This option
will use up colormap cells quickly

-close_color if a similar color is available, use it;
otherwise allocate a new color (this is
the default color scheme)

-match_color always find the closest color. This
option will preserve colormap cells.

MapView 3.0 - 61 - Appendix A

debug-options:

-sync synchronize all packets with the Xl
Server

-trace trace execution through preselected
routines

-echo echo commands parsed on the input stream

-ml level set malloc(3) (memory allocation) debug
level (0=default, 1, or 2)

-showareas show bounding boxes around objects.

MapView 3.0 - 63 - Appendix B

Appndix B

MAP PROCRION

The following strings may be used in the "projection ="

portion of the SetWindowBounds command. The vector map can be

rendered in each of the following map projections via the msi (Map

Server Interface) program. The names in the left column are the

ones understood by the Map Server Interface. The names in the

right column are the ones that CAGIS uses to identify the

projections. Either name may be used.

AlbersEqualAreaConic albers

AzimuthalEqualArea lambertaz

AzimuthalEquidistant azim_eq

Equirectangular equirect

Gnomonic gnomonic

KavraiskyIV

LambertConformal lambert

LonLat geogrph

Mercator mercator

Miller miller

ObliqueMercator

Orthographic orthogr

Perspective gv-persp

pixel

PolarStereographic polrster

Polyconic plyconic

MapView 3.0 - 64 - Appendix B

Sinusoidal s inusoid

Stereographic stereogr

UTM utm

MapView 3.0 -65 -Index

*u44

*(~, 133

u&m 35

+=1 =+P -, =-51

-B 59

-bg 9, 42, 60

-close-color 60

-cmap 59

-echo 61

-exact-color 60

-f 59

-fg 21, 60

-G 59

-H 59

-help 59

-1 59

-ih 59

-is 60

-iw 60

-log 60

-match_color 60

-maxpoints 60

-ml 61

-nolog 60

-pd 60

-pi 60

-showareas 61

-sync 61

-trace 61

-yin 60

-x 60

-y 60

MapView 3.0 - 66 - Index

Add Attribute 10

AppendAllObjectsToFile 45

AppendSelectedObjectsToFile 45

AppendTypedObjectsToFile 45

AttachMenu 34

Attribute Name 10

Attribute Types 10

Back 13

BackGraphic 33

background color 9

bitmap 23, 37

boldface 5

Bug Reporter 13

C++ 33

CAGIS iii, 1, 9, 42

CAGIS image 42

Circle 28, 54

classes 10

Clear All 10

colors 42

Connect 13

constructors 40

Create (Draw)... 11

CREATE CIRCLE OBJECTS 28

CREATE ICON OBJECTS 23

CREATE INSTANCES OF THIS NEW TYPE 30

CREATE NETWORKARC OBJECTS 26

CREATE NETWORKNODE OBJECTS 26

CREATE NETWORKREGION OBJECTS 27

CREATE POLYLINE OBJECTS 18

CREATE TEXT OBJECTS 28

CreateAndShowGraphic 36

CreateGraphic 36

CreateMenu 34

DEFINE A NEW GRAPHIC OBJECT TYPE 29

MapView 3.0 - 67 - Index

Define This Type 10

Define Types 10

DefineBitmap 37

DefineEnumeratedType 39

DefineGraphicType 39

DefinePattern 40

Delete Attribute 10

Delete Type 10

Destroy 13

DESTROY A NETWORKNODE 27

Destroy the Polyline 23

DestroyAllGraphics 41

DestroyGraphic 41

DestroyGraphicType 41

dragging 7

Draw button 11

Draw NetworkArcs 26

Edit 13

EOF 13

Erase Image 9

EraseImage 42

EXIT BUTTON 14

Exit MapView 34

fill pattern 40

foreground color 21

Front 13

FrontGraphic 42

GENERAL STRUCTURE 33

GOAL 6

GOAL Commands 33

HELP BUTTON 13

Icon 23, 55

iconedit 38, 41

Identify 13, 21

image files 43

MapView 3.0 - 68 - Index

IMAGES MENU BUTTON 8

Internet 14

LineSegment 53

LMB 7

LOAD AN IMAGE 16

LOAD AN OVERLAY (GOAL) FILE 18

Load Colormap 8

Load File 12

Load Image 8

LoadColormap 42

LoadImage 43

map projection 47

MAPVIEW BASICS 7

MAPVIEWBITMAPPATH 3

MAPVIEWGOALPATH 3, 12

MAPVIEWHELPDIR 3

MAPVIEWIMAGEPATH 3

menu buttons 7

menu items 34

Menu objects 34

MMB 7

MOSF 15

MOVE A NETWORKNODE 27

Move the Polyline 21

MoveGraphicAbs 43

MoveGraphicLLAbs 43

MoveGraphicLLRel 43

MoveGraphicRel 43

MOVING AND RESIZING WINDOWS 7

Network 56

NetworkArc 26, 56

NetworkNode 26, 56

NetworkRegion 27, 56

OBJECTS MENU BUTTON 10

OPEN LOOK Toolkit 1, 3

MapView 3.0 - 69 - Index

OPEN LOOK User Interface Guidelines 5

Patterns 40

Pixel 53

Polygon 54

Polyline 18, 54

QuickTime 49

QuickTime movie 9

rasterfile 9

rasterfiles 1

Refresh 34

RELOAD THE GOAL FILE 29

RGB 8

RMB 7

RSAS iii

Run 35, 44

Save file 12

SAVE OBJECTS TO A GOAL FILE 29

SAVE THE SCREEN TO RASTERFILE 30

Save to Rasterfile 9

SaveAllObjectsToFile 45

SaveSelectedObjectsToFile 45

SaveTypedObjectsToFile 45

Select All 13

Select and Edit 13

SelectGraphic 46

SetWindowBounds 46

shelltool 13

Show 13

Show All Graphic Types 12

Show by type 12

Show Control Panel 34

ShowAllGraphics 48

ShowGraphic 49

SnapShot 9, 49

SnapShotArea 49

MapView 3.0 - 70 - Index

Standard input 13

START UP MAPVIEW 15

submenus 35

Sun rasterfile 43

Text 28, 55

ToolTalk 6

TUTORIAL 15

underlined 5

UnDo 42

UNIX 3, 14, 35

UnSelect 13

UnSelectGraphic 46

UnShow 13

UnShow All Graphic Types 12

Unshow and Reshow the Polyline 23

UnShowGraphic 49

UpdateAndShowGraphic 50

UpdateAndShowSelectedGraphic 50

UpdateGraphic 51

vector map image 48

View and Modify the Polyline's Attributes 21

VIEW THE GOAL FILE 29

ViewFile 52

WDB2 world database 1

Xl1R5 dynamic libraries 15

XllR5 windowing environment 1, 3

xterm 13

MapView 3.0 - 71 - Bibliography

1IBLIOGRAET

Bennett, Bruce W., Hoyer, Mark, The New RSAS Map Graphics, RAND, Santa

Monica, Calif.; MR-122-NA, October, 1992.

Zobrist, A. L., Marcelino, L. J., Daniels, G. S., RAND's Cartographic

Analysis and Geographic Information System (RAND-CAGIS): A Guide

to System Use, RAND, Santa Monica, Calif.; N-3172-RC, 1991.

